AI 安全狀況管理 (AI-SPM)

獲得模型、GenAI 和 AI 供應鏈的可視性和控制。在新的攻擊途徑出現之前予以阻止。
AI Security Posture Management (AI-SPM)
Adoption of artificial intelligence (AI)
為何如此重要

AI/ML 的快速採用會導致模型受損、AI 模型濫用和不必要的數據暴露。


  • 全新的 AI 攻擊途徑

    由於實作新的管道和基礎結構,加上欠缺統一的可視性,導致企業容易遭受新的攻擊。

  • 處理模型激增問題

    欠缺 AI 庫存可能會導致影子 AI 模型、合規性違規以及透過 AI 支援的應用程式進行數據外洩。

  • 欠缺監管

    以 AI 為重點的新立法要求嚴格控制 AI 的使用和輸入 AI 應用程式的客戶數據。

高層級效益

保護和控制 AI 基礎結構、使用和數據

儘可能發揮 AI 和大型語言模型 (LLM) 的變革效益,而不會導致企業面臨風險。Cortex® Cloud AI 安全狀況管理 (AI-SPM) 可供您掌握和控制 AI 安全性的三個關鍵組成部分:用於訓練或推理的數據、AI 模型的完整性以及對已部署的模型進行的存取。

  • 偵測不安全或未經授權的模型使用。
  • 降低 AI 系統數據暴露的風險。
  • 務必遵循目前和即將發佈的法規。

    Protect and control AI infrastructure, usage and data
    解決方案

    我們的 AI 安全方法

    AI 應用程式生態系統可視性

    探索全部 AI 應用程式、模型和相關資源。識別並追蹤應用程式中使用的 AI 元件運作。

    • AI 應用程式堆疊探索

      探索全部 AI 應用程式、模型和相關資源。

    • AI 運作

      識別並追蹤應用程式中使用的 AI 元件和數據來源運作。

    • 模型庫存

      對部署的 AI 模型編排目錄並識別更新。

    Discover, protect and govern AI and data
    AI Model Risk Analysis

    AI 模型風險分析

    識別 AI 供應鏈中的弱點,並且找到由於錯誤設定而可能導致操縱、濫用和竊取的模型和相關雲端資源。

    • 防止模型入侵和竊取

      透過識別攻擊者的風險來發揮同等的功能。

    • 找出錯誤設定

      透過減少過度授權的運算執行個體和模型。

    • 避免不安全的外掛程式設計

      透過識別過度授權和易受攻擊的代理程式/工作負載。

    涵蓋模型資源的數據安全性

    操縱模型數據可能會造成弱點和偏見、暴露數據,並導致數據隱私權侵犯、合規性和安全風險。

    • 對 AI 堆疊進行分類

      確定敏感數據存在於為 AI 模型提供支援的訓練和參考數據、程式庫、API 和數據管道中的位置。

    • 監控敏感數據

      監控和監管數據暴露、污染風險、隱私權侵犯和安全漏洞。

    • 排定弱點的優先順序

      在託管正在存取敏感數據的 AI 所用的基礎結構中。

    Real-time detection and response

    其他雲端狀況安全功能

    雲端安全狀況管理

    使用 Cortex Cloud 消除公有雲和多雲端環境中最關鍵的風險

    數據安全狀況管理 (DSPM)

    探索、分類和保護雲端環境中的數據。防止外洩和違規行為。

    雲端基礎結構權限管理

    Cortex Cloud 可讓您控制整個多雲端環境中的權限。

    弱點管理

    偵測、排定優先順序並補救從程式碼到雲端的弱點。